Can Health Care Costs be Reduced By Functional Foods Dietary Supplements

SMI Symposium

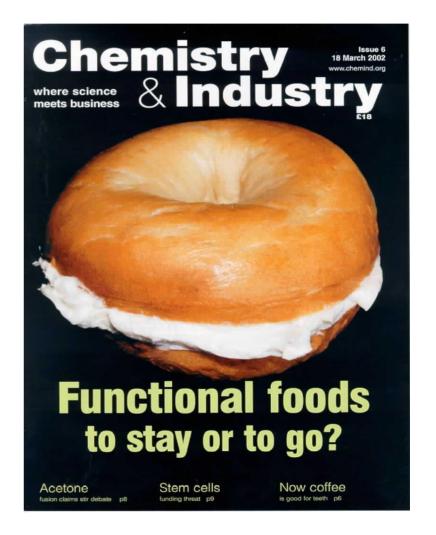
January 17th. 2004

London, UK

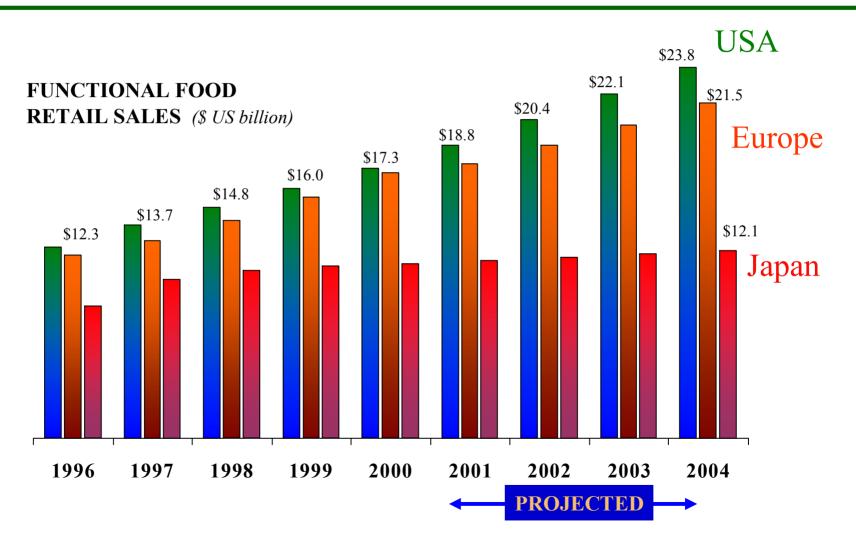
lan Newton,

Director, Business Development and Regulatory Affairs.

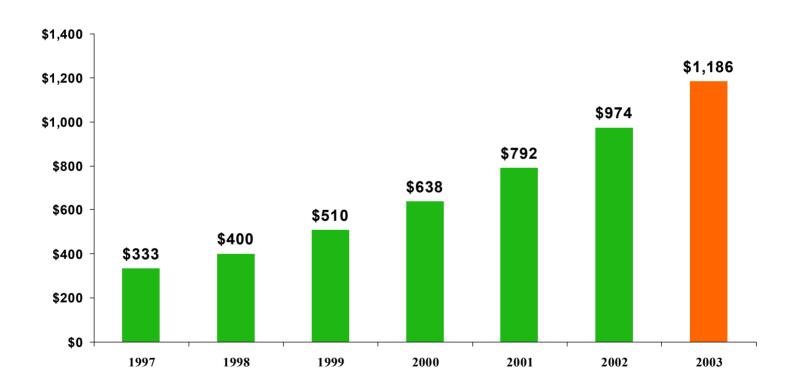
DSM Nutritional Products Inc.

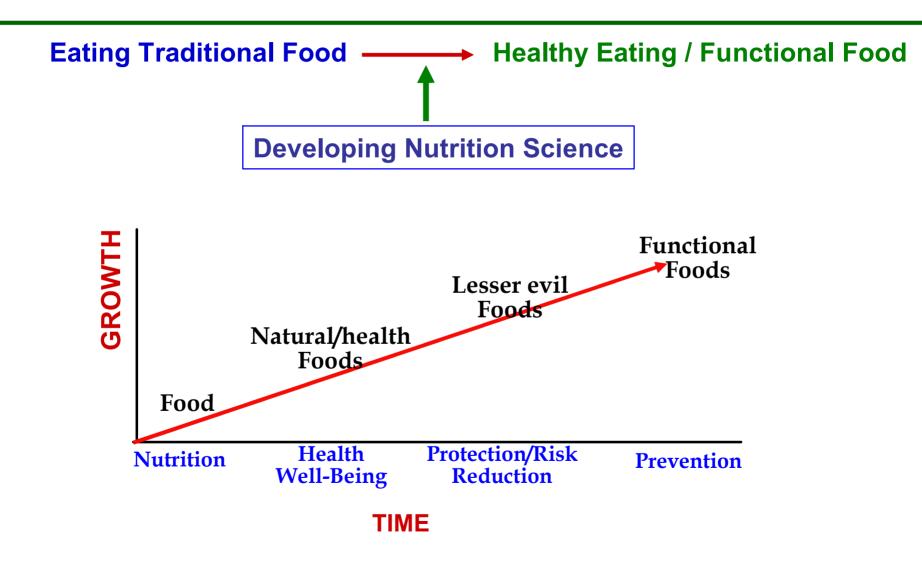

Parsippany. NJ

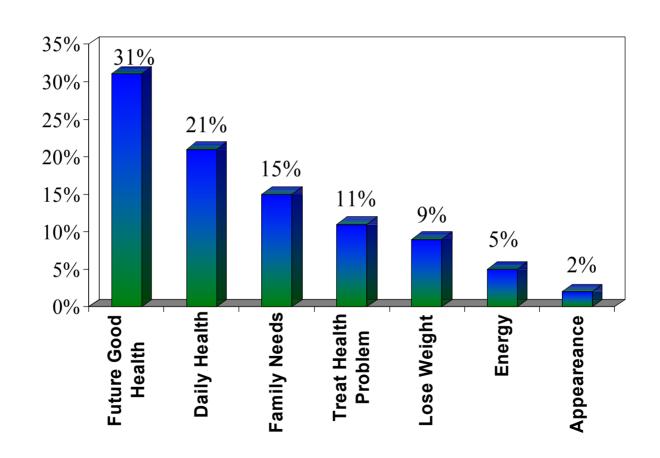
Functional Foods: Here Today Gone Tomorrow?


Most people would argue that they are here to stay

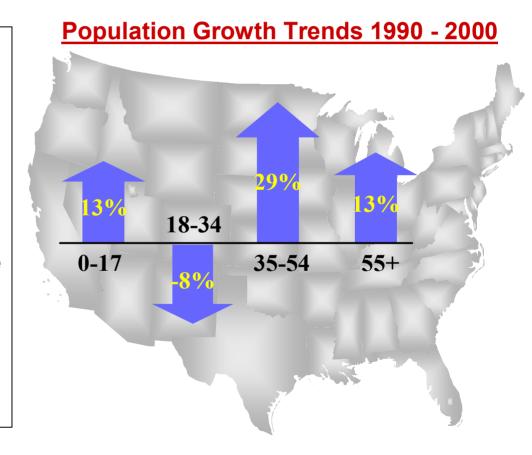
Rationale/Drivers


- Aging population
- Chronic disease epidemic
- New nutrition science
- Consumer choice for healthier foods, eating habits changing
- Rising health care costs
- Government regulations
- Food marketers looking for growth

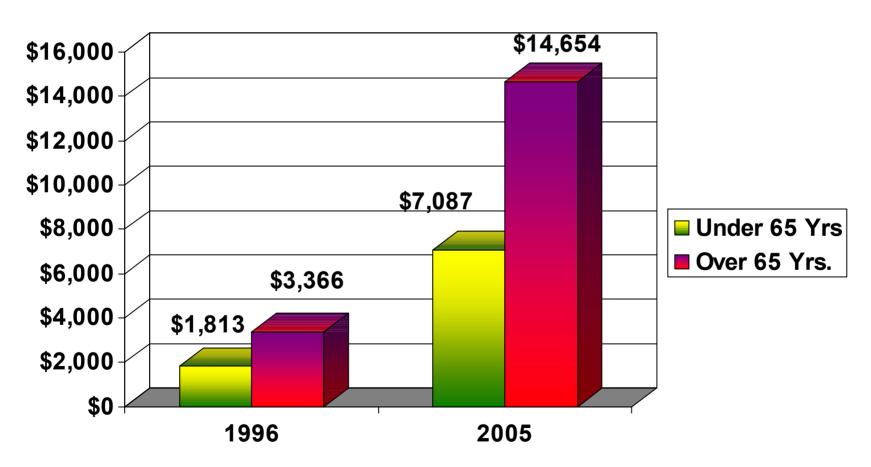

The \$20.0 Billion U.S. Functional Food Market Is Expected to Grow at 8.3% Through 2004 Growth Expected in Eu, Japan Maturing


US Soymilk Sales grew 23% in 2002 to \$970 million.

Transformation/Evolution of Foods


Why Do People Purchase Healthy Foods/Beverages

Population Growth and Chronic Disease


By 2005.....

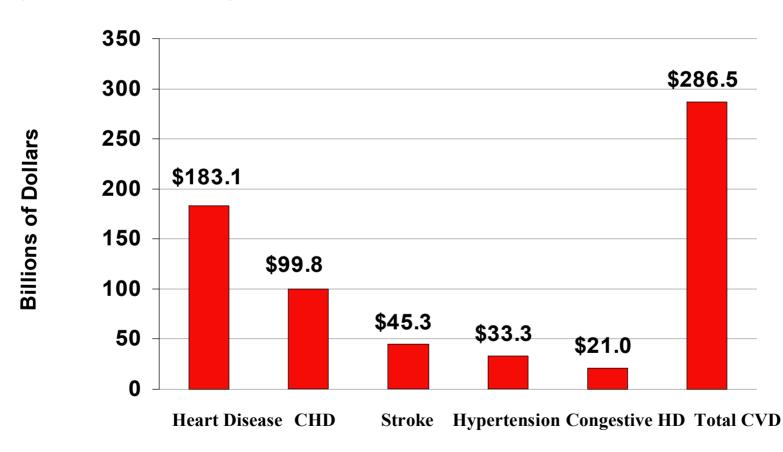
- 1.5 million suffers of Alzheimer's disease
- 20 million diabetics
- 46 million cases of Hypertension
- 6 million congestive Heart Failure cases
- 195 million overweight or obese
- 200 thousand reports of Prostate Cancer
- 247 thousand Breast Cancer patients
- 2 million cataract operations per year



USA Per Capita Health Care Spending

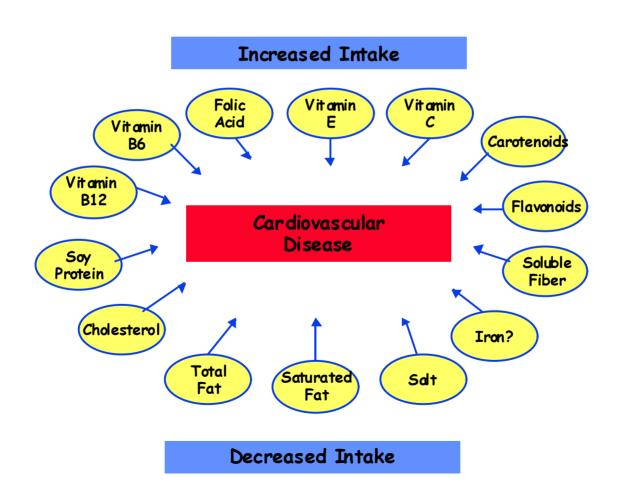
1996-2005

Health Care Costs Retirees to Pay More


Rising Health Care Costs

- Poor dietary health and activity #2 preventable cause of death in USA. (1993)
- Obesity and inactivity cost >\$100 billion annually
- Annual budget National Institutes of Health, ~\$20 billion
- 2000 Research budget for <u>nutrition</u> at NIH, \$400 million, dwarfed by the >\$250 BILLION annual cost of chronic disease in USA linked to poor nutrition
- Alzheimer's cost \$5.5 billion in Canada today,
- In USA Alzheimer's growing from 4 mio people today to 14 million by 2025 and costs expected to be \$100 billion.

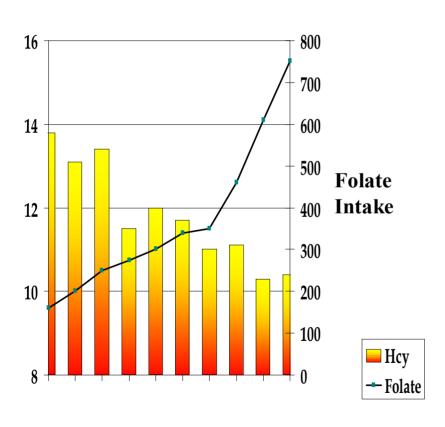
Estimated Direct and Indirect Costs of Cardiovascular Diseases and

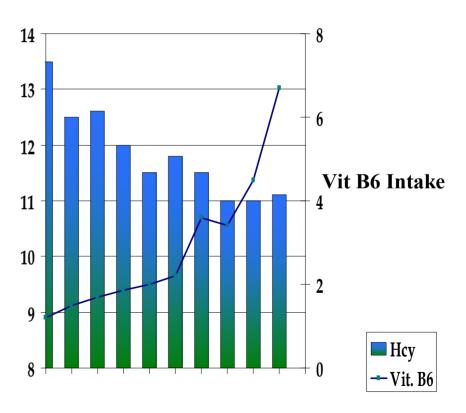

Stroke

(United States: 1999)

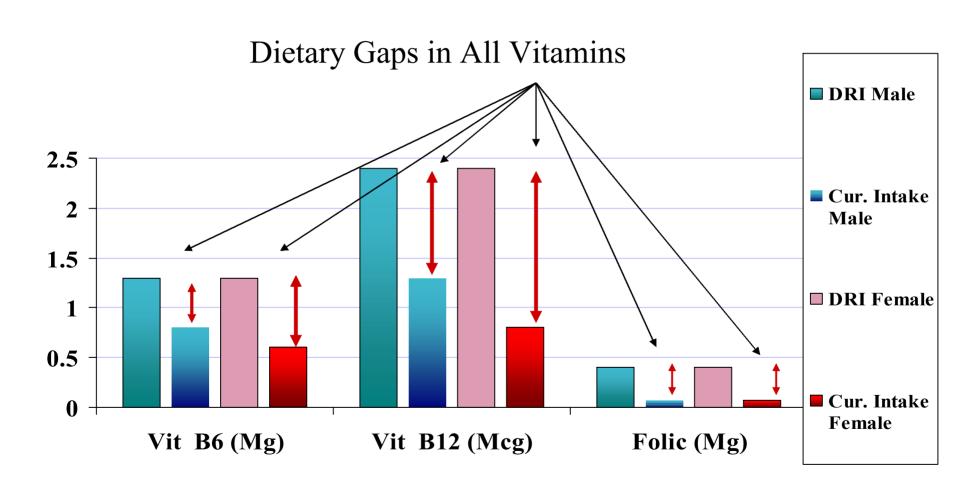
Am. Heart Assoc.

Convergence of Various Factors in CVD




Plasma Homocysteine As A Risk Factor

- Meta analysis of 27 studies, elevation in homocysteine (tHcy) an independent risk factor for arteriosclerosis.
- Every 5 mmol/l increase of tHcy, risk of CAD increases 60%-80% for adults
- 10% of population's CVD risk attributable to Homocysteine
- Two different Meta analyses of 21 studies on folate, showed reductions in Hcy risk.
- B12 alone was also effective in lowering Hcy.


In general ~20% reduction in Homocysteine levels
lower CAD/stenosis ~30%

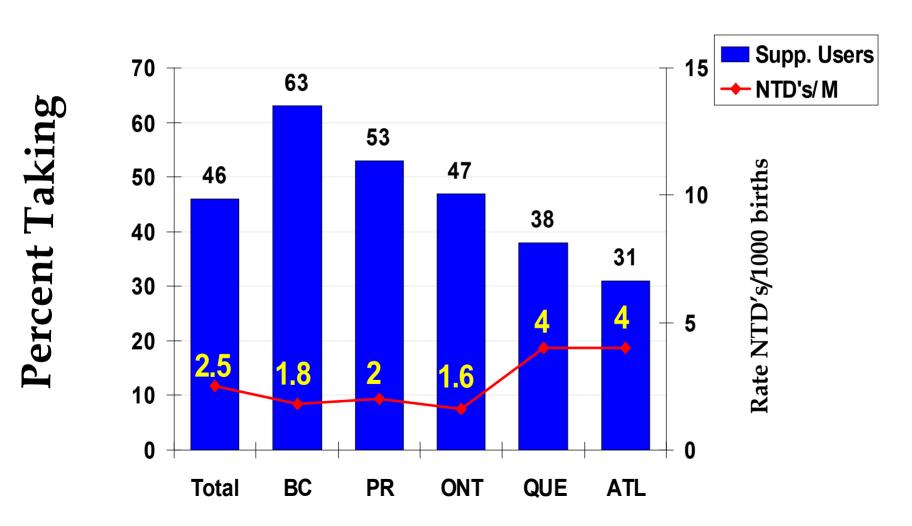
As Vit. B6 and Folate Intake Rise Hcy Declines

Comparison of DRI's and Intakes (USA)

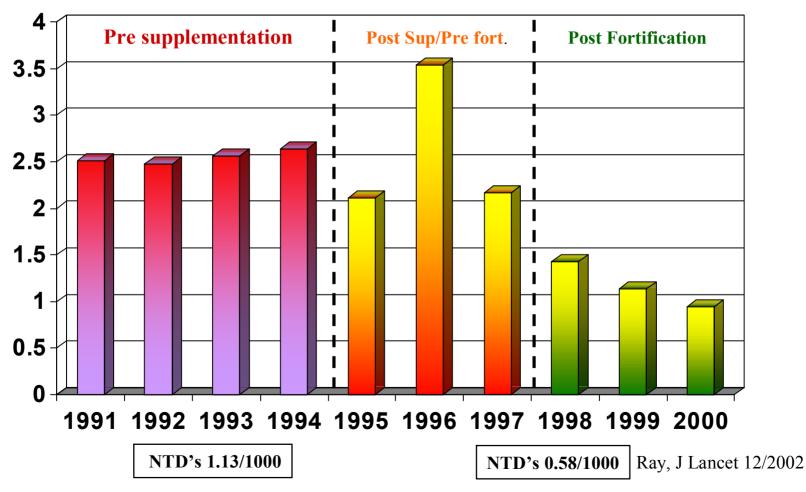
Economic Benefits of Multivitamin Supplementation and Birth Complications

- Many studies show that use of folate prior to conception lowers NTD's ~50-70%
- Study reviewed birth defects, premature birth, CVD
- Utilized epidemiological and intervention studies with risk estimates
- Used hospital discharge data for codes and costs

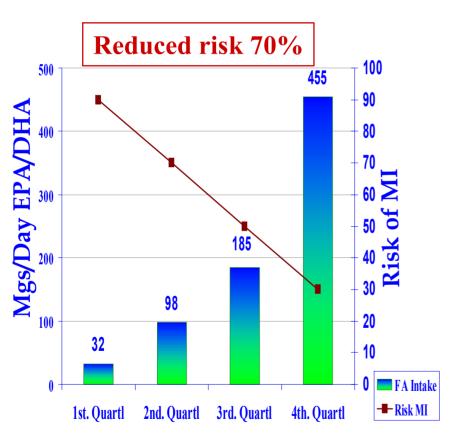
Risk reductions Estimated Savings

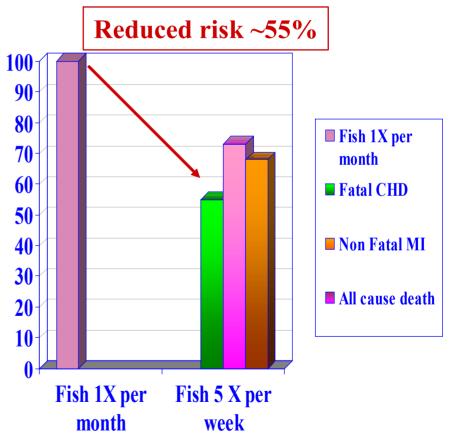

40% for birth defects \$90 million

60% LBW babies \$1.5 billion


38% CHD \$1.6 billion

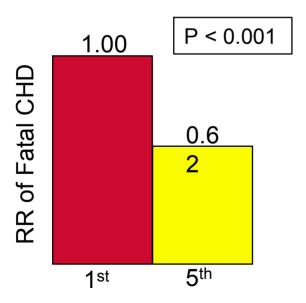
Total cost savings: ~\frac{\$3 \text{ Billion}}{\text{containing multivitamins}} by use of folic acid and zinc


VM Supplement Use and NTD's in Canada



Benefits of Folic Acid on Total NTD's, Nova Scotia

Dietary Intake of Omega-3's and Risk of Cardiac Arrest

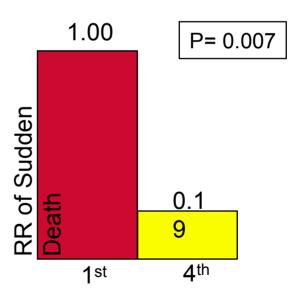


Omega-3 Fatty Acid Protection Against CHD and Sudden Death

Nurses' Health Study

84,688 Females

16-year longitudinal follow-up

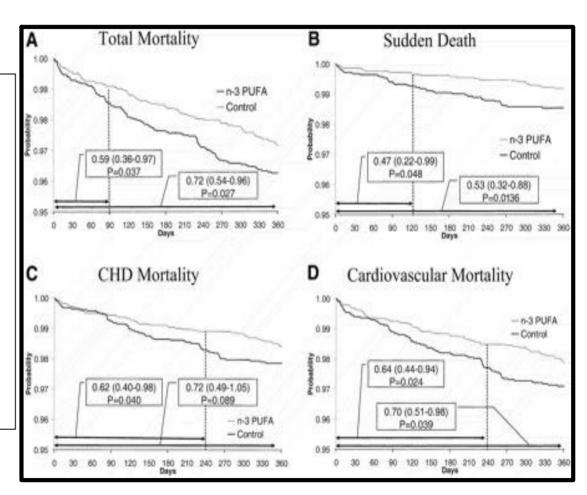


Quintiles of n-3 FA intakes*

Physicians' Health Study

22,071 Males 17-year follow-up

Nested case-control analysis


Quartiles of Blood n-3 FA**

^{*}Hu et al, JAMA 2002; 287:1815-1821.

^{**}Albert et al, N Engl J Med 2002; 346:1113-1118.

Protection Against Sudden Death, CHD and Cardiovascular Mortality by n-3 LC PUFA Supplementation

- A randomized clinical intervention, GISSI Prevenzione (11,323 MI patients)
- Intervention: Daily n-3 PUFA (~882 mg EPA & DHA, 1:2), or vitamin E (300 mg), or both, or control
- Follow-up: 3.5 years

Hospital Costs Vs Nutritional Status (admissions)

Prevalence of malnutrition in hospitals significant, several studies show that 40-50% malnourished

Νι	ıtritional Risk Gp.	Not at Risk Gp.	Other
Studies			
Malnutrition %	46%	-	40-50%
Length of Stay Costs	\$6200 (+35%)	\$4600	2X
LOS	6D	4D	
Readmission	NS	NS	
Home services	31%	12%	

More Post Op complications, morbidity, mortality and higher complications, and costs 36% higher

Nutrition and the Elderly

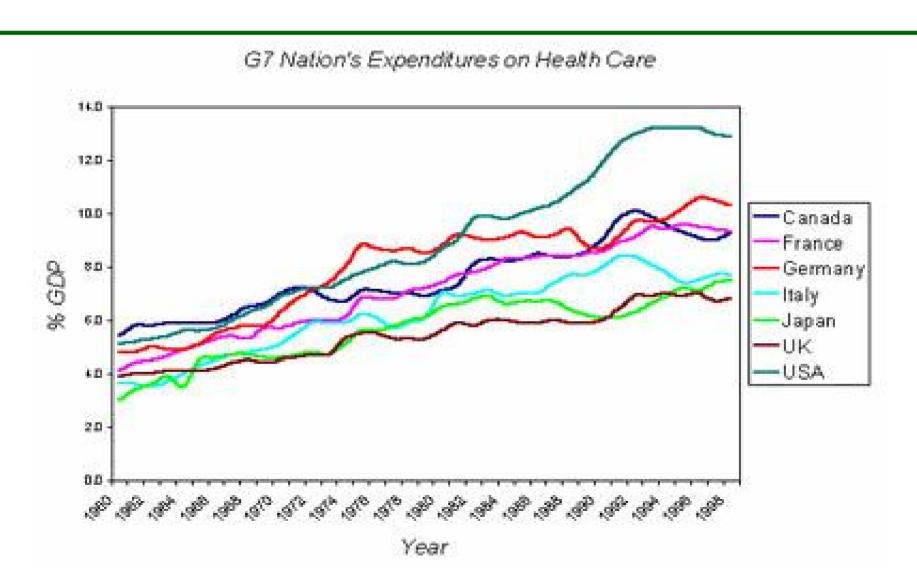
Nutrient deficiencies increase with age.

80% of the independent elderly over 79 yrs. consume inadequate amounts of 4 or more nutrients

- 75% too little folate
- < 63 % too little calcium
- Deficiencies also with vitamins E, B-6, C, Zn and Mg.

Vitamin/mineral supplementation trial with ~ one RDA of 18 vitamins, minerals and trace elements in free-living elderly over 65yrs..

Measures: Immune function


Infectious-related illness

Vitamin and Trace mineral Supplements on Immunity/Infection

Parameter	Users	Non-Users
Deficiencies	Reductions for	No change
	A, BC,B6,C Fe,Zn	
Immune Status	Improvement	No change
	(Increased T4, NK, DTH	I, IL-2)
Infection illness	23 Days	48 Days
Antibiotic Use	18 Days	32 Days

Cost Benefit \$28 dollars saved for every dollar spent

Health Care Costs Rising Globally

Costs Associated with 7 Major Diet Related Diseases in USA (1995)

TOTAL		65%	\$250 BILLION!	
Osteoporosis	N/	\	\$10.0	
Hypertension	NA	\	\$17.4	
Obesity	NA	\	\$2.4 (total \$117.0)	forestall 20% of deaths
Diabetes	55,110	2.4%	\$40.0	estimate proper diets could
Stroke	149,740	6.6%	\$19.7	Researchers
Cancer	530,870	23.4%	\$104.0	
CHD	739,860	32.6%	\$56.3 (others \$250)	
<u>Cause</u>	<u>Deaths</u>		Annual Cost Billions	

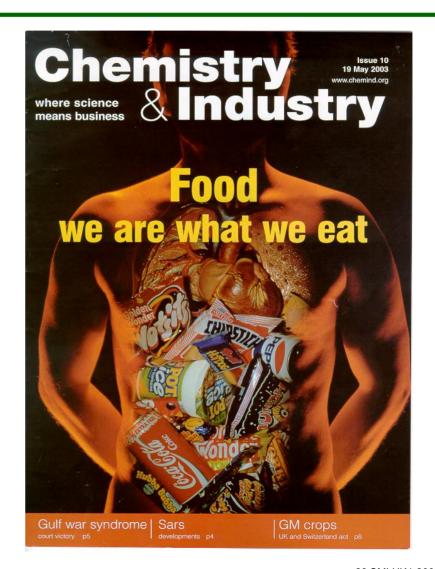
Source: E.Frazao, 1995. USDA ERS

Costs Associated with Major Diet Related Diseases in Canada (2001)

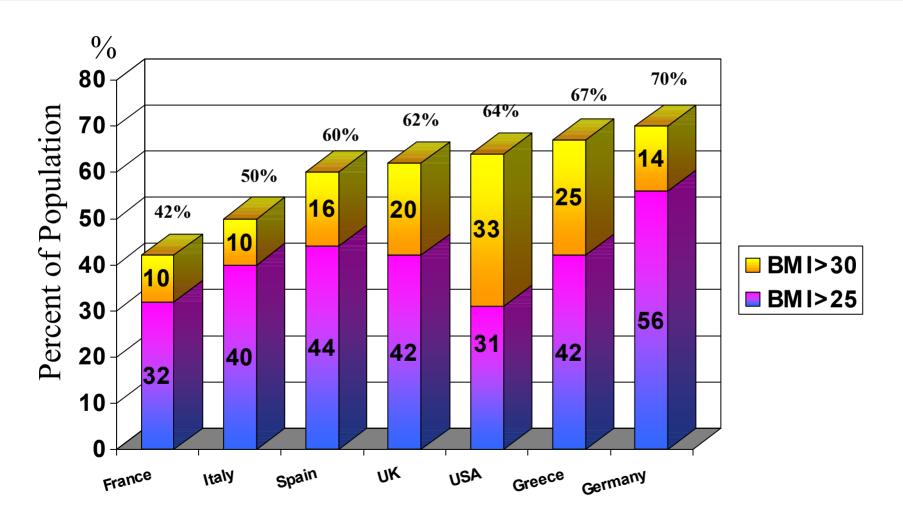
Cause	Annual Costs	% Diet		
Pote	<u>ential</u>			
	Billions	Related	Saving	Bio Bio
CHD	\$13	40-50%	\$6	
Cancer	\$20	809	%	\$8
Diabetes	\$10	35-50%	\$1	
Dementia's	s/Alz \$5-6	?		n/a
Kidney	\$3	?		n/a
Arthritis	\$11	20%	\$0.5	
<u>Psychiatric</u>	\$3	?	n/a	
Other	\$44			
TOTAL	Per Capha spending; \$3	3,174, Seniors \$10,8	49 Billio	ns

Source: Holub, B 2002

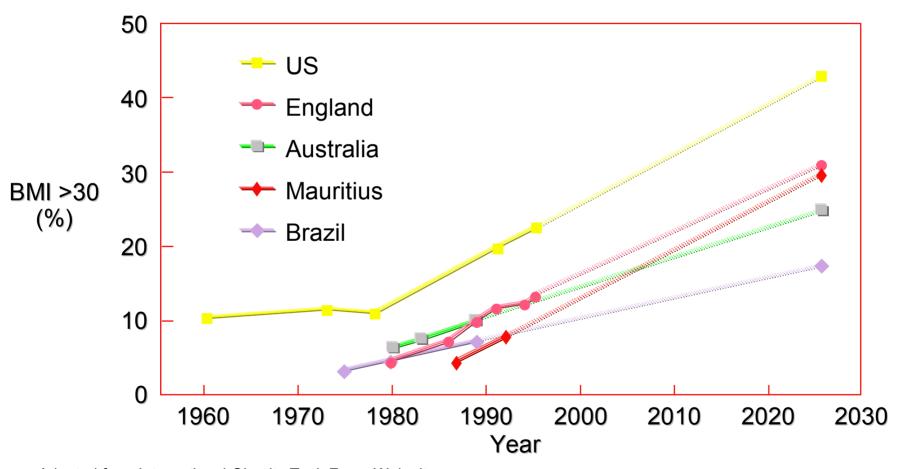
Foods We Are What We Eat.....


Obesity Facts.....

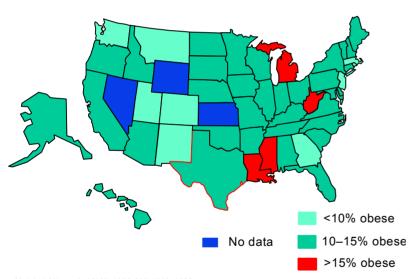
- •One billion people worldwide obese/overweight (AHA, JAHA 2002)
- •64% of population in USA, (obese 31%, overweight 33%) 120 million PERSONS


•Percent obese: 1976-80 15%, 1988-94 23%,

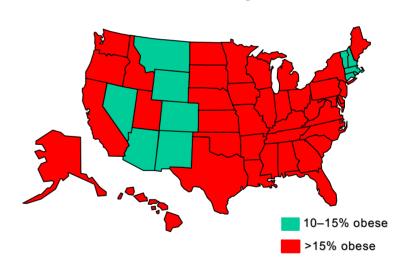
1999 27%


- •Three times as many teens overweight vs. 1980 and twice as many children
- •300,000 deaths, 7% of total health care spending

Prevalence of Obesity & Overweight Globally


Obesity Rates Could Double in 30 Years

Adapted from International Obesity Task Force Web site. Available at: http://www.rri.sari.ac.uk/iotf/slides/graph12.gif.


Prevalence of Obesity in USA 1991-1998

Prevalence of Obesity - 1991

Source: Mokdad AH, et al. JAMA. 1999;282:1519-1522.

Prevalence of Obesity - 1998

Source: Mokdad AH, et al. JAMA, 1999;282;1519-1522.

Costs Associated with Obesity and Inactivity in USA (1995)

·	Inactivity	Obesity
Diabetes II	\$6.4	\$36.6
CHD	\$8.9	\$16.2
Hypertension	\$2.3	\$7.6
Gall Bladder	\$1.9	\$4.3
Cancer		
Breast	\$0.38	\$0.53
Colon	\$2.0	\$0.89
Osteoporosis Fractures	\$2.4	\$3.6
Total Billions	\$24.3	\$70.0 billion
% of Health Costs	2.4%	7.0%

% of Health Costs Other Sources/Countries:USA 5.0%

France 2.0% NL 4.0%

Austral. 2.0%

Source: Colditz GA, 1999. Med Sci Sports Excerc Vol 31.

The Bottom Line.....

Can Functional Foods Reduce Chronic Disease Costs?

Is there a good rationale?

Is there supporting clinical data?

Is the ingredient safe for all populations/ages?

Is the food in a form the consumer wants?

Is the price premium reasonable?

Can you get health professionals support?

Physicians Support for Vitamins and Their Health

Benefits

Majorities of physicians believe vitamins can be very or somewhat effective in reducing the risk or delaying the onset of:

Osteoporosis (92%)
Cardiovascular disease (85%)
High cholesterol (80%)
Cancer (76%)
Macular degeneration (67%)
Arthritis (66%)
Alzheimers (54%)
Cataracts (50%)

Estimated Cost Savings from Sterol Spreads UK

- National Health Service Estimate
- Plant sterol spreads have potential to lower country costs by \$150 million dollars
- Due to lowering LDL cholesterol 10-15% as a part of healthy diet.
- Benefit also accrue to those persons on statin drugs.
- Annual cost to patients, \$70 with NO cost to NHS
- Additional savings in primary cost care

NHS/Med Econ J. 2000

Estimated Savings with Functional Foods for Cardiovascular Disease

(Canada 2002)

Fibers	Wholesale cost/Day for 8% Chol reduction	Expected Decrease in risk	Reduced Expenditure (net)	
Citrus pectins	8 cents	20%	\$2.58 billion	
Guar Gum	7 cents	20%	\$2.65 billion	
Plant sterols	20 cents	20%	\$1.56 billion	
LC Omega Fatty acids. TG lowering by 15%	13 cents	20% women 7.5% men	\$1.6 billion	
Ingredient	Cost per Day for 20% Cholesterol Lowering	Cost per Year	Target Pop. Cost/Yr	Net Savings
STATIN Drug	\$1.50	\$913	\$4.97 billion	-
Cholestin,(red yeast rice)	\$1.50	\$548	\$2.98	\$2.0 billion
policosanol	\$1.50	\$548	\$2.98	\$2.0 billion
Ingredient	Cost per Day for TG Lowering	Cost per Year	Target Pop. Cost/Yr	Net Savings
Gemfibrozil	\$1.70	\$621	\$3.38 billion	-
LC Omega-3 Fatty acids	\$0.30	\$110	\$0.66 billion	\$272 billion
				36 S

Holub, B. 2002.

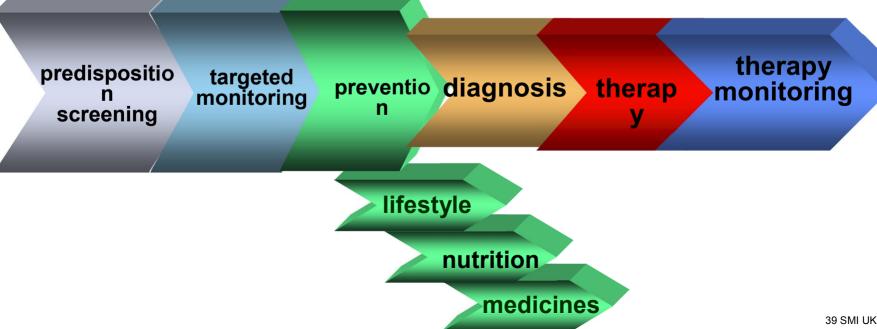
36 SIMI UK1-2004.ppt

Estimated Savings with Functional Foods for Cancers (Canada 2002)

Ingredient	Cost per Day for Nutraceutical	Expected Decrease in Cancer	Cost per Year	Reduced cancer Expenditure per year
Color-rectal Cancer				
Calcium (1.2g) Selenium (0.2mg)	7 cents 5 cents	15% 58%	\$26 \$18	\$300 million \$1.2 billion
Folic Acid (0.4mg)	3 cents	30%	\$1	\$600 million
Prostate Cancer				
Selenium (0.2 mg)	5 cents	63%	\$18	\$315 million

Gross savings of \$2.4 billion dollars per year for selected cancers

Holub, B 2002.


Cost Effectiveness Cholesterol lowering Agents

Integrated Healthcare Concepts

from today... therapy diagnosis therapy monitoring

...into the future

Health Economics and Nutraceuticals

- 1. Potential cost effectiveness for Direct Medical Applications:
 - Bone fide treatments
 - Adjunct to support other treatments
- 2. Applications in Normal population
 - For "well-being" applications
 - Prevention of future conditions.
- Health care providers now in evidence-based medicine
- Efficacy and safety vital but practice now includes COST-EFFECTIVENESS
- Healthcare providers may pay for nutraceuticals if you can show:

Clinical effectiveness

Low toxicity

Cost-effectiveness

YOU NEED TO COLLECT THE EVIDENCE!

Wyse,R. 2001

Estimated Costs to Obtain FDA Approved Health Claim (1999)

dollars)

- B vitamins (B6, Folic, B12) for reduction of CVD: \$174 million
- Vitamin E for reduction CHD: \$58 million
- Omega-3 fatty acids for reducing CHD: \$58 million
- Antioxidants (A, C, E, BC, Lycopene, Lutein) for reduction in cancer: \$348 million
- Fiber for reduction colorectal cancer: \$116 million
- Folic acid for reduction in NTD: \$58 million

US Health Claims Currently Permitted

Claim	Food	<u>DS</u>	CANADA
 Saturated Fat and cholesterol and CHD (CFR 101.75) 	X		X
- Fat and cancer (CFR 101.73)	X		
- Fiber containing fruit, vegetables, grains and cancer (CFR 101.76)		Χ	
- Fiber containing fruits,vegetables,grains and CHD (CFR 101.77)		X	
- Fruits and vegetables and cancer (CFR 101.78)	Χ		
- Calcium and Osteoporosis (CFR 101.72)	Χ	Χ	X
- Folate and neural tube defects (CFR 101.79)	Χ	Χ	
- Potassium and blood pressure and stroke (FDAMA)	Χ		
- Whole grains and CHD and certain cancers (FDAMA)	Χ		
- Sodium and hypertension (CFR 101.74)	X		X
- Soluble fiber from psyllium or whole oats and CHD (CFR 101.81)	X	X	
- Sugar alcohol and dental decay (CFR 101.80)	X	X	X
- Soy protein and CHD (CFR 101.82)		X	Χ
- Stanol/Stanol esters and CVD (CFR 101.83)	X		
- LC Pufa and CVD (Q)		X	
- B Vitamins and CVD (homocystein) (Q)		X	
- Folic acid and neural tube defects (Q)			X
- AO vitamins and certain kinds of cancer May.2003		X	42 SMI UK1-2004.ppt

INDUSTRY OF WELLNESS FOODS

LEGISLATION/REGULATION

CONSUMER AWARENESS

HEALTHCARE COSTS

MEDIA COVERAGE

ROF.INTEREST/SUPPOR

SCIENCE DATA-EFFICACY/SAFETY

Thank You

Ian Newton,

Director, Business Development and Regulatory Affairs,

DSM Nutritional Products Inc.

Parsippany. NJ

44 SMI UK1-2004.ppt